हिंदी

∫ S E C X Log ( Sec X + Tan X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]
योग

उत्तर

` Note: "Here, we are considering "log  x  as log_e x`
\[\text{Let I} = \int\frac{\sec x}{\log \left( \sec x + \tan x \right)}dx\]
\[\text{Putting} \log \left( \sec x + \tan x \right) = t\]
\[ \Rightarrow \frac{\sec x \tan x + \sec^2 x}{\sec x + \tan x} = \frac{dt}{dx}\]
\[ \Rightarrow \sec x\frac{\left( \sec x + \tan x \right)}{\sec x + \tan x} = \frac{dt}{dx}\]
\[ \Rightarrow \text{sec x dx} = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \text{log}\left| t \right| + C\]
\[ = \text{log}\left| \text{log }\left( \sec x + \tan x \right) \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 31 | पृष्ठ ४८

संबंधित प्रश्न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{x^3}{\left( x^2 + 1 \right)^3} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^3 + x + 1}{x^2 - 1}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

\[\int\frac{2x + 1}{\left( x + 2 \right) \left( x - 3 \right)^2} dx\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{x^2}{x^4 + x^2 - 2}dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:  \[\int 2^x  \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×