Advertisements
Advertisements
प्रश्न
Evaluate:
उत्तर
\[ = 4\int\frac{1}{\sin^2 \left( 2x \right)}dx\]
\[ = 4\int {cosec}^2 \left( 2x \right) dx\]
\[ = - \frac{4}{2}\cot\left( 2x \right) + c\]
\[ = - 2\cot\left( 2x \right) + c\]
\[\text{ Hence,} \int\frac{1}{\sin^2 x \cos^2 x}dx = - \text{ 2 cot}\left( \text{ 2x }\right) + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`