Advertisements
Advertisements
प्रश्न
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
उत्तर
\[\int\frac{x + \cos6x}{3 x^2 + \sin6x}dx\]
\[ \text{ Let }\left( 3 x^2 + \sin6x \right) = t\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 6x + 6\cos6x \right) dx = dt\]
\[ \therefore \int\frac{x + \cos6x}{3 x^2 + \sin6x}dx = \frac{1}{6}\int\frac{1}{t}dt\]
\[ = \frac{1}{6}\text{ log}\left| t \right| + c\]
\[ = \frac{1}{6}\text{ log}\left| 3 x^2 + \sin6x \right| + c\]
\[\text{ Hence,} \int\frac{x + \cos6x}{3 x^2 + \sin6x}dx = \frac{1}{6}\text{ log}\left| 3 x^2 + \sin6x \right| + c\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`