Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
उत्तर
Let I = `int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
= `int x^(3/2)/sqrt(("a"^(3/2))^2 - (x^(3/2))^2) "d"x`
Put `x^(3/2)` = t
⇒ `3/2 x^(1/2) "d"x` = dt
⇒ `x^(1/2) "d"x = 2/3 "dt"`
∴ I = `2/3 int "dt"/sqrt(("a"^(3/2))^2 - ("t")^2)`
= `2/3 sin^-1 "t"/("a"^(3/2)) + "C"`
= `2/3 sin^-1 ((x^(3/2))/("a"^(3/2))) + "C"`
Hence I = `2/3 sin^-1 (x/"a")^(3/2) + "C"`.
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`