Advertisements
Advertisements
प्रश्न
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
उत्तर
\[ = \int\left( x^\frac{1}{2} - x^\frac{3}{2} \right) dx\]
\[ = \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} - \frac{x^\frac{3}{2} + 1}{\frac{3}{2} + 1} + c\]
\[ = \frac{2}{3} x^\frac{3}{2} - \frac{2}{5} x^\frac{5}{2} + c\]
\[\text{ Hence,} \int\left( 1 - x \right)\sqrt{x} \text{ dx }= \frac{2}{3} x^\frac{3}{2} - \frac{2}{5} x^\frac{5}{2} + c\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`