Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{e^x dx}{\left( 1 + e^x \right)^2}\]
\[\text{Let 1 }+ e^x = t\]
\[ \Rightarrow e^x = \frac{dt}{dx}\]
\[ \Rightarrow e^x dx = dt\]
\[Now, \int\frac{e^x dx}{\left( 1 + e^x \right)^2}\]
\[ = \int\frac{dt}{t^2}\]
\[ = \int t^{- 2} dt\]
\[ = \frac{t^{- 2} + 1}{- 2 + 1} + C\]
\[ = \frac{- 1}{t} + C\]
\[ = - \frac{1}{1 + e^x} + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{ dx }\]
Evaluate:
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`