Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int x/(x^4 - 1) "d"x`
उत्तर
Let I = `int x/(x^4 - 1) "d"x`
Put x2 = t
⇒ 2x dx = dt
⇒ x dx = `"dt"/2`
`1/2 int "dt"/("t"^2 - 1) = 1/2 int "dt"/("t"^2 - (1)^2)`
= `1/2 * 1/(2 * 1) log |("t" - 1)/("t" + 1)| + "C"` ....`[because int 1/(x^2 - "a"^2) "d"x = 1/(2"a") log |(x - "a")/(x + "a")| + "C"]`
= `1/4 log |(x^2 - 1)/(x^2 + 1)| + "C"`
Hence, I = `1/4 log |(x^2 - 1)/(x^2 + 1)| + "C"`
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`