हिंदी

∫ 1 Cos ( X + a ) Cos ( X + B ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
योग

उत्तर

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
\[\text{Multiplying and Dividing by} \sin\left[ \left( x + b \right) - \left( x + a \right) \right], \text{we get}\]
\[ = \int\frac{1}{\sin\left[ \left( x + b \right) - \left( x + a \right) \right]} \times \frac{\sin\left[ \left( x + b \right) - \left( x + a \right) \right]}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
\[ = \int\frac{1}{\sin\left( b - a \right)} \times \frac{\sin\left[ \left( x + b \right) - \left( x + a \right) \right]}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]


\[ = \frac{1}{\sin\left( b - a \right)}\int\frac{\sin\left( x + b \right)\cos\left( x + a \right) - \sin\left( x + a \right)\cos\left( x + b \right)}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \int\frac{\sin\left( x + b \right)}{\cos\left( x + b \right)}dx - \int\frac{\sin\left( x + a \right)}{\cos\left( x + a \right)}dx \right]\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \int\tan\left( x + b \right)dx - \int\tan\left( x + a \right)dx \right]\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \log\left( \sec\left( x + b \right) \right) - \log\left( \sec\left( x + a \right) \right) \right] + c\]
\[ = \frac{1}{\sin\left( b - a \right)}\left[ \log\left( \frac{\sec\left( x + b \right)}{\sec\left( x + a \right)} \right) \right] + c\]

 Hence , \[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx = \frac{1}{\sin\left( b - a \right)}\left[ \log\left( \frac{\sec\left( x + b \right)}{\sec\left( x + a \right)} \right) \right] + c\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 28 | पृष्ठ ४८

संबंधित प्रश्न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x - 1}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

Evaluate the following integrals: 

`int "sec x"/"sec 2x" "dx"`

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{1}{e^x + 1} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{\sqrt{1 + x^2}}{x^4}dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{x^4 - x^2 - 12}dx\]

 


Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate: 

\[\int\frac{1}{\sin^2 x \cos^2 x}dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×