Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}}dx\]
\[Let, x - \cos x = t\]
\[ \Rightarrow \left( 1 + \sin x \right) = \frac{dt}{dx}\]
\[ \Rightarrow \left( 1 + \sin x \right) dx = dt\]
\[Now, \int\frac{1 + \sin x}{\sqrt{x - \cos x}}dx\]
\[ = \int\frac{dt}{\sqrt{t}}\]
\[ = \int t^{- \frac{1}{2}} dt\]
\[ = \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + C\]
\[ = 2\sqrt{t} + C\]
\[ = 2\sqrt{x - \cos x} + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`