Advertisements
Advertisements
प्रश्न
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
उत्तर
\[\text{ Let I }= \int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\text{ Let }\sqrt{x} = t\]
\[ \Rightarrow \frac{dx}{2\sqrt{x}} = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2\text{ dt}\]
\[\text{ Putting}\ \sqrt{x} = t \text{ and} \frac{dx}{\sqrt{x}} = \text{ 2 dt }\]
\[ \therefore I = 2\int \sec^2 + dt\]
\[ = 2 \tan t + C\]
\[ = 2 \tan \left( \sqrt{x} \right) + C \left( \because t = \sqrt{x} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Evaluate the following integrals:
` ∫ cot^3 x "cosec"^2 x dx `
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:
Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\log x}{x} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`