Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{Let I }= \int\frac{\cos2x + x + 1}{x^2 + \sin2x + 2x}dx\]
\[Putting\ x^2 + \sin2x + 2x = t\]
\[ \Rightarrow 2x + 2\cos 2x + 2 = \frac{dt}{dx}\]
\[ \Rightarrow \left( x + \cos 2x + 1 \right)dx = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{1}{t}dt\]
\[ = \frac{1}{2}\text{ln}\left| t \right| + C\]
\[ = \frac{1}{2} \text{ln }\left| x^2 + \sin2x + 2x \right| + C \left[ \because t = x^2 + \sin 2x + 2x \right]\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integrals:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)