हिंदी

Evaluate: ∫ X 2 1 + X 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .

योग

उत्तर

\[\text{ Let I }= \int \frac{x^2 dx}{1 + x^3}\]
\[\text{ Putting 1} + x^3 = t\]
\[ \Rightarrow 3 x^2 \text{ dx} = dt\]
\[ \Rightarrow x^2 \text{ dx} = \frac{dt}{3}\]
\[ \therefore I = \frac{1}{3}\int \frac{dt}{t}\]
\[ = \frac{1}{3}\text{ ln } \left| t \right| + C\]
\[ = \frac{1}{3}\text{ ln} \left| 1 + x^3 \right| + C \left( \because t = 1 + x^3 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Very Short Answers | Q 38 | पृष्ठ १९८

संबंधित प्रश्न

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

\[\int\frac{1 + \sin x}{\sqrt{x - \cos x}} dx\]

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


`  ∫    {1} / {cos x  + "cosec x" } dx  `

\[\int\frac{1}{5 - 4 \cos x} \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2 + 1}{\left( x^2 + 4 \right)\left( x^2 + 25 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Evaluate:

\[\int\frac{x^2 + 4x}{x^3 + 6 x^2 + 5} \text{ dx }\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate: \[\int\left( 1 - x \right)\sqrt{x}\text{  dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×