हिंदी

Evaluate the Following Integral: ∫ X 2 ( X 2 + 4 ) ( X 2 + 9 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]
योग

उत्तर

\[\text{Let }I = \int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

We express

\[\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)} = \frac{Ax + B}{x^2 + 4} + \frac{Cx + D}{x^2 + 9}\]

\[ \Rightarrow x^2 = \left( Ax + B \right)\left( x^2 + 9 \right) + \left( Cx + D \right)\left( x^2 + 4 \right)\]

Equating the coefficients of `x^3 , x^2 , x` and constants, we get

\[0 = A + C\text{ and }1 = B + D\text{ and }0 = 9A + 4C\text{ and }0 = 9B + 4D\]

\[\text{or }A = 0\text{ and }B = - \frac{4}{5}\text{ and }C = 0\text{ and }D = \frac{9}{5}\]

\[ \therefore I = \int\left( \frac{- \frac{4}{5}}{x^2 + 4} + \frac{\frac{9}{5}}{x^2 + 9} \right)dx\]

\[ = - \frac{4}{5}\int\frac{1}{x^2 + 4}dx + \frac{9}{5}\int\frac{1}{x^2 + 9} dx\]

\[ = - \frac{4}{5} \times \frac{1}{2} \tan^{- 1} \frac{x}{2} + \frac{9}{5} \times \frac{1}{3} \tan^{- 1} \frac{x}{3} + c\]

\[ = - \frac{2}{5} \tan^{- 1} \frac{x}{2} + \frac{3}{5} \tan^{- 1} \frac{x}{3} + c\]

\[\text{Hence, }\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx = - \frac{2}{5} \tan^{- 1} \frac{x}{2} + \frac{3}{5} \tan^{- 1} \frac{x}{3} + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 18 | पृष्ठ १७६

संबंधित प्रश्न

Evaluate : `int_0^3dx/(9+x^2)`


\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{\cos 2x}{\left( \cos x + \sin x \right)^2} dx\]

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{\cos 2x + x + 1}{x^2 + \sin 2x + 2x} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

Evaluate the following integrals:

\[\int\frac{1}{\left( x^2 + 2x + 10 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\frac{5x - 2}{1 + 2x + 3 x^2} \text{ dx }\]

\[\int\frac{x + 5}{3 x^2 + 13x - 10}\text{ dx }\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x \cos^{- 1} x}{\sqrt{1 - x^2}}dx\]

 


Evaluate the following integrals:

\[\int e^{2x} \text{ sin }\left( 3x + 1 \right) \text{ dx }\]

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]

Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral :-

\[\int\frac{x}{\left( x^2 + 1 \right)\left( x - 1 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x}dx\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Write a value of

\[\int\frac{\left( \log x \right)^n}{x} \text{ dx }\]

Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]


Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`


Evaluate the following:

`int ("d"x)/(xsqrt(x^4 - 1))`  (Hint: Put x2 = sec θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×