हिंदी

∫ ( X − 3 ) √ X 2 + 3 X − 18 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]
योग

उत्तर

\[\text{ Let I } = \int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[\text{ We  express x - 3} = A\left( \frac{d}{d x}\left( x^2 + 3x - 18 \right) \right) + B\]
\[x - 3 = A(2x + 3) + B\]
\[\text{Equating the coefficients of x and constants, we get}\]
\[1 = 2A \text{ and }- 3 = 3A + B\]
\[or A = \frac{1}{2} \text{ and B }= - \frac{9}{2} \]
\[ \therefore I = \int\left( \frac{1}{2}\left( 2x + 3 \right) - \frac{9}{2} \right)\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[ = \frac{1}{2}\int\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }- \frac{9}{2}\int\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[ = \frac{1}{2} I_1 - \frac{9}{2} I_2 . . . (1)\]
\[\text{ Now,} I_1 = \int\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} dx\]
\[ \text{ Let x}^2 + 3x - 18 = u\]
\[ \text{On differentiating both sides, we get}\]
\[ \left( 2x + 3 \right)dx = du\]
\[ \therefore I_1 = \int\sqrt{u}du\]
\[ = \frac{2}{3} u^\frac{3}{2} + c_1 \]
\[ = \frac{2}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} + c_1 . . . (2)\]
\[\text{ And,} I_2 = \int\sqrt{x^2 + 3x - 18} \text{  dx }\]
\[ = \int\sqrt{x^2 + 3x + \frac{9}{4} - \frac{9}{4} - 18} \text{  dx }\]
\[ = \int\sqrt{\left( x + \frac{3}{2} \right)^2 - \left( \frac{9}{2} \right)^2} dx\]
\[ \text{ Let} \left( x + \frac{3}{2} \right) = u\]
\[ \text{On differentiating both sides, we get}\]
\[ dx = du\]
\[ \therefore I_2 = \int\sqrt{\left( u \right)^2 - \left( \frac{9}{2} \right)^2} du\]
\[ = \frac{u}{2}\sqrt{\left( u \right)^2 - \left( \frac{9}{2} \right)^2} - \frac{1}{2} \left( \frac{9}{2} \right)^2 \text { log }\left| u + \sqrt{\left( u \right)^2 - \left( \frac{9}{2} \right)^2} \right| + c_2 \]
\[ = \frac{x + \frac{3}{2}}{2}\sqrt{\left( x + \frac{3}{2} \right)^2 - \left( \frac{9}{2} \right)^2} - \frac{1}{2} \left( \frac{9}{2} \right)^2 \text{ log}\left| \left( x + \frac{3}{2} \right) + \sqrt{\left( x + \frac{3}{2} \right)^2 - \left( \frac{9}{2} \right)^2} \right| + c_2 \]
\[ = \frac{2x + 3}{4}\sqrt{x^2 + 3x - 18} - \frac{81}{8}\text{ log }\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c_2 . . . (3)\]
\[\text{ From (1), (2) and (3), we get }\]
\[ \therefore I = \frac{1}{2}\left( \frac{2}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} + c_1 \right) - \frac{9}{2}\left( \frac{2x + 3}{4}\sqrt{x^2 + 3x - 18} - \frac{81}{8}\text{ log }\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c_2 \right)\]
\[ = \frac{1}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} - \frac{9}{8}\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} + \frac{729}{16}\text{ log}\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c\]
\[\text{ Hence,} \int\left( x - 3 \right)\sqrt{x^2 + 3x - 18} \text{  dx }= \frac{1}{3} \left( x^2 + 3x - 18 \right)^\frac{3}{2} - \frac{9}{8}\left( 2x + 3 \right)\sqrt{x^2 + 3x - 18} + \frac{729}{16}\log\left| \left( x + \frac{3}{2} \right) + \sqrt{x^2 + 3x - 18} \right| + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 11 | पृष्ठ १५९

संबंधित प्रश्न

Evaluate : `int_0^3dx/(9+x^2)`


Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

\[\int\frac{1 + \tan x}{1 - \tan x} dx\]

\[\int\frac{1}{x \log x} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{2 \cos x - 3 \sin x}{6 \cos x + 4 \sin x} dx\]

\[\int\frac{10 x^9 + {10}^x \log_e 10}{{10}^x + x^{10}} dx\]

` ∫  {1+tan}/{ x + log  sec  x   dx} `

\[\int\frac{1}{\cos 3x - \cos x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)^2} dx\]

 ` ∫       cot^3   x  "cosec"^2   x   dx `


\[\int\frac{\left\{ e^{\sin^{- 1} }x \right\}^2}{\sqrt{1 - x^2}} dx\]


\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)}dx\]

Evaluate the following integral:

\[\int\frac{3x - 2}{\left( x + 1 \right)^2 \left( x + 3 \right)}dx\]

Evaluate the following integral:

\[\int\frac{2 x^2 + 1}{x^2 \left( x^2 + 4 \right)}dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

\[\int\frac{( x^2 + 1) ( x^2 + 4)}{( x^2 + 3) ( x^2 - 5)} dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\left( 1 + \log x \right)^2}{x} \text{   dx }\]


Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]


Evaluate:  \[\int\frac{2}{1 - \cos2x}\text{ dx }\]


Evaluate:

\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int ("d"x)/sqrt(16 - 9x^2)`


Evaluate the following:

`int (3x - 1)/sqrt(x^2 + 9) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int sqrt(2"a"x - x^2)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×