हिंदी

Evaluate the Following Integral ∫ X 2 + X + 1 ( X 2 + 1 ) ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral :-

\[\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]
योग

उत्तर

\[\text{Let }I = \int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx\]

We express

\[\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1}\]

\[ \Rightarrow x^2 + x + 1 = A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x + 2 \right)\]

\[\text{Equating the coefficients of x^2 , x and constants, we get}\]

\[1 = A + B and 1 = 2B + C and 1 = A + 2C\]

\[or A = \frac{3}{5} and B = \frac{2}{5} and C = \frac{1}{5} \]

\[ \therefore I = \int\left( \frac{\frac{3}{5}}{x + 2} + \frac{\frac{2}{5}x + \frac{1}{5}}{x^2 + 1} \right)dx\]

\[ = \frac{3}{5}\int\frac{1}{x + 2}dx + \frac{2}{5}\int\frac{x}{x^2 + 1} dx + \frac{1}{5}\int\frac{1}{x^2 + 1} dx\]

\[ = \frac{3}{5} I_1 + \frac{2}{5} I_2 + \frac{1}{5} I_3 ............(1)\]

\[\text{Now, }I_1 = \int\frac{1}{x + 2}dx\]

Let x + 2 = u

On differentiating both sides, we get

\[ dx = du\]

\[ \therefore I_1 = \int\frac{1}{u}du\]

\[ = \log\left| u \right| + c_1 \]

\[ = \log\left| x + 2 \right| + c_1 ............(2)\]

\[\text{And, }I_2 = \int\frac{x}{x^2 + 1} dx\]

\[\text{Let }\left( x^2 + 1 \right) = u\]

On differentiating both sides, we get

\[ 2x\ dx = du\]

\[ \therefore I_2 = \frac{1}{2}\int\frac{1}{u}du\]

\[ = \frac{1}{2}\log\left| u \right| + c_2 \]

\[ = \frac{1}{2}\log\left| x^2 + 1 \right| + c_2 ............(3)\]

\[\text{And, }I_3 = \int\frac{1}{x^2 + 1} dx\]

\[ = \tan^{- 1} x + c_3 ..............(4)\]

From (1), (2), (3) and (4), we get

\[ \therefore I = \frac{3}{5}\left( \log\left| x + 2 \right| + c_1 \right) + \frac{2}{5}\left( \frac{1}{2}\log\left| x^2 + 1 \right| + c_2 \right) + \frac{1}{5}\left( \tan^{- 1} x + c_3 \right)\]

\[ = \frac{3}{5}\log\left| x + 2 \right| + \frac{1}{5}\log\left| x^2 + 1 \right| + \frac{1}{5} \tan^{- 1} x + c\]

\[\text{Hence, }\int\frac{x^2 + x + 1}{\left( x^2 + 1 \right)\left( x + 2 \right)}dx = \frac{3}{5}\log\left| x + 2 \right| + \frac{1}{5}\log\left| x^2 + 1 \right| + \frac{1}{5} \tan^{- 1} x + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 14 | पृष्ठ १७६

संबंधित प्रश्न

Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`


\[\int\frac{x}{\sqrt{x + 4}} dx\]

\[\int\sqrt{\frac{1 - \cos x}{1 + \cos x}} dx\]

` ∫ {cot x}/ { log sin x} dx `

\[\int\frac{e^{2x}}{e^{2x} - 2} dx\]

\[\int\frac{1}{\cos\left( x + a \right) \cos\left( x + b \right)}dx\]

\[\int\frac{sec x}{\log \left( \text{sec x }+ \text{tan x} \right)} dx\]

\[\int\frac{1}{\sqrt{x}\left( \sqrt{x} + 1 \right)} dx\]

\[\int\frac{e^{x - 1} + x^{e - 1}}{e^x + x^e} dx\]

\[\int\frac{1}{\sin x \cos^2 x} dx\]

 `   ∫     tan x    .  sec^2 x   \sqrt{1 - tan^2 x}     dx\ `

\[\int\frac{x^3 - 3x}{x^4 + 2 x^2 - 4}dx\]

Evaluate the following integrals: 

\[\int\frac{x + 2}{\sqrt{x^2 + 2x + 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \cos x} \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{\log x}{\left( x + 1 \right)^2}dx\]

 


Evaluate the following integrals:

\[\int\left( x + 3 \right)\sqrt{3 - 4x - x^2} \text{  dx }\]

Evaluate the following integral:

\[\int\frac{1}{x\left( x^3 + 8 \right)}dx\]

 


\[\int\frac{\cos x}{\left( 1 - \sin x \right) \left( 2 - \sin x \right)} dx\]

Evaluate the following integrals:

\[\int\frac{x^2}{(x - 1) ( x^2 + 1)}dx\]

\[\int\frac{x^2 + 1}{x^4 - x^2 + 1} \text{ dx }\]

Write a value of

\[\int\frac{\log x^n}{x} \text{ dx}\]

Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]

 


Evaluate:\[\int\frac{\sin \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]


Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]


Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]


Write the value of\[\int\sec x \left( \sec x + \tan x \right)\text{  dx }\]


Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]


Evaluate: `int_  (x + sin x)/(1 + cos x )  dx`


Evaluate the following:

`int sqrt(1 + x^2)/x^4 "d"x`


Evaluate the following:

`int sqrt(5 - 2x + x^2) "d"x`


Evaluate the following:

`int x/(x^4 - 1) "d"x`


Evaluate the following:

`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×