Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
उत्तर
Let I = `int sqrt(1 + x^2)/x^4 "d"x`
= `int sqrt(x^2 (1 + 1/x^2))/x^4 "d"x`
= `int (xsqrt(1 + 1/x^2))/x^4 "d"x`
= `int (xsqrt(1 + 1/x^2))/x^4 "d"x`
Put `1 + 1/x^2` = r2
⇒ `(-2)/x^3 "d"x = 2"t" "dt"`
⇒ `- "dx"/x^3` = t dt
∴ I = `- int "t"^2 "dt"`
= `- "t"^3/3 + "C"`
= `- 1/3(1 + 1/x^2)^(3/2) + "C"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Write a value of
Evaluate:
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate:\[\int\frac{e\tan^{- 1} x}{1 + x^2} \text{ dx }\]
Evaluate: \[\int\frac{1}{\sqrt{1 - x^2}} \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate : \[\int\frac{1}{x(1 + \log x)} \text{ dx}\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`