Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
\[\text{ Let I }= \int \left( \frac{\log x^n}{x} \right) dx\]
\[ = \int \frac{n \log x}{x}dx \left( \because \log x^a = a \log x \right)\]
\[\text{ Let log x }= t\]
\[ \Rightarrow \frac{1}{x}dx = dt\]
\[ \therefore I = n \int \text{ t dt}\]
\[ = n . \frac{t^2}{2} + C\]
\[ = \frac{n . \left( \log x \right)^2}{2} + C \left( \because t = \log x \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
\[\int\frac{\cot x}{\sqrt{\sin x}} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Write a value of
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate: `int_ (x + sin x)/(1 + cos x ) dx`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`