Advertisements
Advertisements
प्रश्न
उत्तर
Putting x + 4 = t
Then, x = t – 4
Difference both sides
dx = dt
Now integral becomes,
\[I = \int\left( \frac{t - 4 - 1}{\sqrt{t}} \right)dt\]
\[ = \int\left( \frac{t}{\sqrt{t}} - \frac{5}{\sqrt{t}} \right)dt\]
\[ = \int\left( t^\frac{1}{2} - 5 t^{- \frac{1}{2}} \right)dt\]
\[ = \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} - 5\frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + C\]
\[ = \frac{2}{3} t^\frac{3}{2} - 10\sqrt{t} + C\]
\[ = \frac{2}{3} \left( x + 4 \right)^\frac{3}{2} - 10 \left( x + 4 \right)^\frac{1}{2} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral :-
Evaluate the following integral :-
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int\frac{\cos \sqrt{x}}{\sqrt{x}} \text{ dx }\]
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int 2^x \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{x + \cos6x}{3 x^2 + \sin6x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`