Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
उत्तर
\[\text{Let }I = \int\frac{x^2}{x^4 - x^2 - 12}dx\]
We express
\[\frac{x^2}{x^4 - x^2 - 12} = \frac{x^2}{x^4 - 4 x^2 + 3 x^2 - 12}\]
\[ = \frac{x^2}{\left( x^2 - 4 \right)\left( x^2 + 3 \right)}\]
\[ = \frac{A}{x^2 - 4} + \frac{B}{x^2 + 3}\]
\[ \Rightarrow x^2 = A\left( x^2 + 3 \right) + B\left( x^2 - 4 \right)\]
Equating the coefficients of `x^2` and constants, we get
\[1 = A + B\text{ and }0 = 3A - 4B\]
\[\text{or }A = \frac{4}{7}\text{ and }B = \frac{3}{7}\]
\[ \therefore I = \int\left( \frac{\frac{4}{7}}{x^2 - 4} + \frac{\frac{3}{7}}{x^2 + 3} \right)dx\]
\[ = \frac{4}{7}\int\frac{1}{x^2 - 4}dx + \frac{3}{7}\int\frac{1}{x^2 + 3} dx\]
\[ = \frac{4}{7} \times \frac{1}{4}\log\left| \frac{x - 2}{x + 2} \right| + \frac{\sqrt{3}}{7} \tan^{- 1} \frac{x}{\sqrt{3}} + c\]
\[ = \frac{1}{7}\log\left| \frac{x - 2}{x + 2} \right| + \frac{\sqrt{3}}{7} \tan^{- 1} \frac{x}{\sqrt{3}} + c\]
\[\text{Hence, }\int\frac{x^2}{x^4 - x^2 - 12}dx = \frac{1}{7}\log\left| \frac{x - 2}{x + 2} \right| + \frac{\sqrt{3}}{7} \tan^{- 1} \frac{x}{\sqrt{3}} + c\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^3dx/(9+x^2)`
` ∫ cot^3 x "cosec"^2 x dx `
\[\int\frac{1}{\sqrt{1 - x^2} \left( \sin^{- 1} x \right)^2} dx\]
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integrals:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate:\[\int\frac{x^2}{1 + x^3} \text{ dx }\] .
Evaluate:\[\int \sec^2 \left( 7 - 4x \right) \text{ dx }\]
Evaluate: \[\int\frac{x^3 - x^2 + x - 1}{x - 1} \text{ dx }\]
Evaluate: \[\int\frac{1}{x^2 + 16}\text{ dx }\]
Evaluate: \[\int\frac{2}{1 - \cos2x}\text{ dx }\]
Evaluate:
\[\int \cos^{-1} \left(\sin x \right) \text{dx}\]
Evaluate:
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`