हिंदी

Evaluate the Following Integral: ∫ X 2 1 − X 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]
योग

उत्तर

\[Let I = \int\frac{x^2}{1 - x^4}dx\]

We express

\[\frac{x^2}{1 - x^4} = \frac{x^2}{\left( 1 - x^2 \right)\left( 1 + x^2 \right)}\]
\[ = \frac{A}{1 - x^2} + \frac{B}{1 + x^2}\]
\[ \Rightarrow x^2 = A\left( 1 + x^2 \right) + B\left( 1 - x^2 \right)\]

Equating the coefficients of `x^2` and constants, we get

\[1 = A - B\text{ and }0 = A + B\]
\[\text{or }A = \frac{1}{2}\text{ and }B = - \frac{1}{2}\]
\[ \therefore I = \int\left( \frac{\frac{1}{2}}{1 - x^2} + \frac{- \frac{1}{2}}{1 + x^2} \right)dx\]
\[ = \frac{1}{2}\int\frac{1}{1 - x^2}dx - \frac{1}{2}\int\frac{1}{1 + x^2} dx\]
\[ = \frac{1}{2} \times \frac{1}{2}\log\left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{- 1} x + c\]
\[ = \frac{1}{4}\log\left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{- 1} x + c\]
\[\text{Hence, }\int\frac{x^2}{1 - x^4}dx = \frac{1}{4}\log\left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{- 1} x + c\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 67 | पृष्ठ १७८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int x^3 \cos x^4 dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×