English

Evaluate the Following Integral: ∫ X 2 1 − X 4 D X - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]
Sum

Solution

\[Let I = \int\frac{x^2}{1 - x^4}dx\]

We express

\[\frac{x^2}{1 - x^4} = \frac{x^2}{\left( 1 - x^2 \right)\left( 1 + x^2 \right)}\]
\[ = \frac{A}{1 - x^2} + \frac{B}{1 + x^2}\]
\[ \Rightarrow x^2 = A\left( 1 + x^2 \right) + B\left( 1 - x^2 \right)\]

Equating the coefficients of `x^2` and constants, we get

\[1 = A - B\text{ and }0 = A + B\]
\[\text{or }A = \frac{1}{2}\text{ and }B = - \frac{1}{2}\]
\[ \therefore I = \int\left( \frac{\frac{1}{2}}{1 - x^2} + \frac{- \frac{1}{2}}{1 + x^2} \right)dx\]
\[ = \frac{1}{2}\int\frac{1}{1 - x^2}dx - \frac{1}{2}\int\frac{1}{1 + x^2} dx\]
\[ = \frac{1}{2} \times \frac{1}{2}\log\left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{- 1} x + c\]
\[ = \frac{1}{4}\log\left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{- 1} x + c\]
\[\text{Hence, }\int\frac{x^2}{1 - x^4}dx = \frac{1}{4}\log\left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{- 1} x + c\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 178]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 67 | Page 178

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{x^3}{x - 2} dx\]

`∫     cos ^4  2x   dx `


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×