मराठी

Evaluate the Following Integral: ∫ X 2 1 − X 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]
बेरीज

उत्तर

\[Let I = \int\frac{x^2}{1 - x^4}dx\]

We express

\[\frac{x^2}{1 - x^4} = \frac{x^2}{\left( 1 - x^2 \right)\left( 1 + x^2 \right)}\]
\[ = \frac{A}{1 - x^2} + \frac{B}{1 + x^2}\]
\[ \Rightarrow x^2 = A\left( 1 + x^2 \right) + B\left( 1 - x^2 \right)\]

Equating the coefficients of `x^2` and constants, we get

\[1 = A - B\text{ and }0 = A + B\]
\[\text{or }A = \frac{1}{2}\text{ and }B = - \frac{1}{2}\]
\[ \therefore I = \int\left( \frac{\frac{1}{2}}{1 - x^2} + \frac{- \frac{1}{2}}{1 + x^2} \right)dx\]
\[ = \frac{1}{2}\int\frac{1}{1 - x^2}dx - \frac{1}{2}\int\frac{1}{1 + x^2} dx\]
\[ = \frac{1}{2} \times \frac{1}{2}\log\left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{- 1} x + c\]
\[ = \frac{1}{4}\log\left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{- 1} x + c\]
\[\text{Hence, }\int\frac{x^2}{1 - x^4}dx = \frac{1}{4}\log\left| \frac{1 + x}{1 - x} \right| - \frac{1}{2} \tan^{- 1} x + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 67 | पृष्ठ १७८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \sin^2 x\ dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \cot^4 x\ dx\]

\[\int \sec^4 x\ dx\]


\[\int \log_{10} x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×