मराठी

∫ 2 X 2 + 7 X − 3 X 2 ( 2 X + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{\left( 2 x^2 + 7x - 3 \right) dx}{x^2 \left( 2x + 1 \right)}\]

\[\text{Let }\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{2x + 1}\]

\[ \Rightarrow \frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} = \frac{A \left( x \right) \left( 2x + 1 \right) + B \left( 2x + 1 \right) + C x^2}{x^2 \left( 2x + 1 \right)}\]

\[ \Rightarrow 2 x^2 + 7x - 3 = A \left( 2 x^2 + x \right) + B \left( 2x + 1 \right) + C x^2 \]

\[ \Rightarrow 2 x^2 + 7x - 3 = \left( 2A + C \right) x^2 + \left( A + 2B \right)x + B\]

\[\text{Equating coefficients of like terms}\]

\[2A + C = 2 . . . . . \left( 1 \right)\]

\[A + 2B = 7 . . . . . \left( 2 \right)\]

\[B = - 3 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = 13\]

\[B = - 3\]

\[C = - 24\]

\[ \therefore \frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} = \frac{13}{x} - \frac{3}{x^2} - \frac{24}{2x + 1}\]

\[ \Rightarrow I = 13\int\frac{dx}{x} - 3\int x^{- 2} dx - 24\int\frac{dx}{2x + 1}\]

\[ = 13 \log \left| x \right| + \frac{3}{x} - 24 \frac{\log \left| 2x + 1 \right|}{2} + C\]

\[ = 13 \log \left| x \right| + \frac{3}{x} - 12 \log \left| 2x + 1 \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 33 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

` ∫   tan   x   sec^4  x   dx  `


\[\int \sec^4 2x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int \sin^4 2x\ dx\]

\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×