मराठी

∫ X 3 + X 2 + 2 X + 1 X 2 − X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
बेरीज

उत्तर

\[\text{ Let } I = \int\left( \frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} \right) dx\]

\[\text{ Therefore }, \]
\[\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} = x + 2 + \frac{3x - 1}{x^2 - x + 1} . . . . . \left( 1 \right)\]
\[\text{ Let }\]
\[3x - 1 = A\frac{d}{dx} \left( x^2 - x + 1 \right) + B\]
\[3x - 1 = A \left( 2x - 1 \right) + B\]
\[3x - 1 = \left( 2A \right) x + B - A\]
\[ \text{Equating  Coefficients  of  like } terms\]
\[2A = 3\]
\[A = \frac{3}{2}\]
\[B - A = - 1\]
\[B - \frac{3}{2} = - 1\]
\[B = \frac{1}{2}\]
\[\int\left( \frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1} \right) dx = \int\left( x + 2 \right) dx + \int\left( \frac{\frac{3}{2} \left( 2x - 1 \right) + \frac{1}{2}}{x^2 - x + 1} \right) dx\]


\[ = \int\left( x + 2 \right) dx + \frac{3}{2} \int\left( \frac{2x - 1}{x^2 - x + 1} \right) dx + \frac{1}{2}\int\frac{dx}{x^2 - x + 1}\]
\[ = \int\left( x + 2 \right) dx + \frac{3}{2}\int\frac{\left( 2x - 1 \right) dx}{x^2 - x + 1} + \frac{1}{2}\int\frac{dx}{x^2 - x + \frac{1}{4} - \frac{1}{4} + 1}\]
\[ = \int\left( x + 2 \right) dx + \frac{3}{2}\int\frac{\left( 2x - 1 \right) dx}{x^2 - x + 1} + \frac{1}{2}\int\frac{dx}{\left( x - \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{x^2}{2} + 2x + \frac{3}{2} \text{ log }\left| x^2 - x + 1 \right| + \frac{1}{2} \times \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{\sqrt{3}}{2}} \right) + C\]
\[ = \frac{x^2}{2} + 2x + \frac{3}{2} \text{ log } \left| x^2 - x + 1 \right| + \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{2x - 1}{\sqrt{3}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.2 | Q 8 | पृष्ठ १०६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×