मराठी

∫ Sec − 1 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sec^{- 1} \sqrt{x}\ dx\]
बेरीज

उत्तर

\[\int 1_{II} . \sec^{- 1} \sqrt{x}_I dx\]
\[ = \sec^{- 1} \sqrt{x}_{} \int1\text{  dx }- \int\left\{ \frac{d}{dx}\left( \sec^{- 1} \sqrt{x} \right)\int1 \text{ dx }\right\}dx\]
\[ = \sec^{- 1} \sqrt{x} . x - \int \frac{1}{\sqrt{x} \sqrt{1 - x}} \times \frac{1}{2\sqrt{x}} \times \text{  x dx }\]
\[ = x \sec^{- 1} \sqrt{x} - \frac{1}{2} \int \left( 1 - x \right)^{- \frac{1}{2}} dx\]
\[ = x \sec^{- 1} x - \frac{1}{2} \left[ \frac{\left( 1 - x \right)^{- \frac{1}{2} + 1}}{\left( - \frac{1}{2} + 1 \right) \left( - 1 \right)} \right] + C\]
\[ = x \sec^{- 1} x + \left( 1 - x \right)^\frac{1}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 30 | पृष्ठ १३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×