Advertisements
Advertisements
प्रश्न
` ∫ tan 2x tan 3x tan 5x dx `
बेरीज
उत्तर
\[We\ know\ that, \]
\[ \tan 5x = \tan \left( 2x + 3x \right)\]
\[ \Rightarrow \tan 5x = \frac{\tan 2x + \tan 3x}{1 - \tan 2x \tan 3x}\]
\[ \Rightarrow \tan 5x - \tan 2x \tan 3x \tan 5x = \tan 2x + \tan 3x\]
\[ \Rightarrow \tan 2x \tan 3x \tan 5x = \tan 5x - \tan 2x - \tan 3x\]
\[ \therefore \int\tan 2x \tan 3x \tan 5x = \int\left( \tan 5x - \tan 2x - \tan 3x \right)dx\]
\[ = \frac{1}{5} \ln \left| \sec 5x \right| - \frac{1}{2} \ln \left| \sec 2x \right| - \frac{1}{3} \ln \left| \sec 3x \right| + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
` ∫ cos 3x cos 4x` dx
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{x}{x^2 + 3x + 2} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]
\[\int \tan^4 x\ dx\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]