मराठी

∫ X + 1 X 2 + X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 1}{x^2 + x + 3} dx\]
बेरीज

उत्तर

\[\int\frac{\left( x + 1 \right) dx}{x^2 + x + 3}\]
\[x + 1 = \frac{Ad}{dx}\left( x^2 + x + 3 \right) + B\]
\[x + 1 = A \left( 2x + 1 \right) + B\]
\[x + 1 = \text{ 2 Ax + A + B }\]

Comparing Coefficients of like powers of x

\[2A = 1\]
\[A = \frac{1}{2}\]
\[A + B = 1\]
\[\frac{1}{2} + B = 1\]
\[B = \frac{1}{2}\]
\[\left( x + 1 \right) = \frac{1}{2} \left( 2x + 1 \right) + \frac{1}{2}\]

\[Now, \int\frac{\left( x + 1 \right) dx}{x^2 + x + 3}\]
\[ = \int\frac{\frac{1}{2} \left( 2x + 1 \right)dx}{x^2 + x + 3} + \frac{1}{2}\int\frac{dx}{x^2 + x + 3}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 1 \right)dx}{x^2 + x + 3} + \frac{1}{2}\int\frac{dx}{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 3}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 1 \right)dx}{x^2 + x + 3} + \frac{1}{2}\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 + 3 - \frac{1}{4}}\]
\[ = \frac{1}{2}\int\frac{\left( 2x + 1 \right) dx}{x^2 + x + 3} + \frac{1}{2}\int\frac{dx}{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{11}}{2} \right)^2}\]
\[ = \frac{1}{2} \text{ log }\left| x^2 + x + 3 \right| + \frac{1}{2} \times \frac{2}{\sqrt{11}} \text{ tan}^{- 1} \left( \frac{x + \frac{1}{2}}{\frac{\sqrt{11}}{2}} \right) + C\]
\[ = \frac{1}{2} \text{ log }\left| x^2 + x + 3 \right| + \frac{1}{\sqrt{11}} \text{ tan}^{- 1} \left( \frac{2x + 1}{\sqrt{11}} \right) + C\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 2 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×