मराठी

∫ X 6 + 1 X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
बेरीज

उत्तर

\[\int \left( \frac{x^6 + 1}{x^2 + 1} \right)dx\]
\[ = \int \left[ \frac{\left( x^2 \right)^3 + 1^3}{x^2 + 1} \right]\text{dx }A^3 + B^3 = \left( A + B \right) \left( A^2 - AB + B^2 \right)\]
\[ = \int\frac{\left( x^2 + 1 \right)\left( x^4 - x^2 + 1 \right)}{\left( x^2 + 1 \right)}dx\]
\[ = \int\left( x^4 - x^2 + 1 \right)dx\]
\[ = \int x^4 dx + \int x^2 dx + \int1dx\]
\[ = \frac{x^{4 + 1}}{4 + 1} - \frac{x^{2 + 1}}{2 + 1} + x + C\]
\[ = \frac{x^5}{5} - \frac{x^3}{3} + x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 12 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int x \cos^3 x\ dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int \tan^4 x\ dx\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×