मराठी

∫ √ x 2 − a 2 dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{x^2 - a^2} \text{ dx}\]
बेरीज

उत्तर

\[\text{ Let  I } = \int {1_{II} \cdot} \sqrt{x^2 {  _I} - a ^2} \text{ dx }\]
\[ = \sqrt{x^2 - a^2}\int1 \text{ dx} - \int\left( \frac{d}{dx}\left( \sqrt{x^2 - a^2} \right)\int1 \text{ dx}\right)dx\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\frac{1 \times 2x}{2 \sqrt{x^2 - a^2}} \cdot x\text{ dx}\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\left( \frac{x^2 - a^2 + a^2}{\sqrt{x^2 - a^2}} \right)dx\]
\[ = \sqrt{x^2 - a^2} \cdot x - \int\sqrt{x^2 - a^2} dx - a^2 \int\frac{dx}{\sqrt{x^2 - a^2}}\]
\[ = x\sqrt{x^2 - a^2} - I - a^2 \int\frac{dx}{\sqrt{x^2 - a^2}}\]
\[ \therefore 2I = x\sqrt{x^2 - a^2} - a^2 \text{ ln } \left| x + \sqrt{x^2 - a^2} \right|\]
\[ \Rightarrow I = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \text{ ln
}\left| x + \sqrt{x^2 - a^2} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 85 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \sin^5 x\ dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×