Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ We have,} \]
\[I = \int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}} \text{ dx }\]
\[I = \frac{1}{\sqrt{a}}\int\frac{1 + a - 1 - \sqrt{ax}}{1 - \sqrt{ax}} \text{ dx }\]
\[I = \frac{1}{\sqrt{a}}\int\frac{1 - \sqrt{ax}}{1 - \sqrt{ax}} dx + \frac{1}{\sqrt{a}}\int\frac{a - 1}{1 - \sqrt{ax}} \text{ dx }\]
\[I = \frac{1}{\sqrt{a}}\int dx + \frac{a - 1}{\sqrt{a}}\int\frac{1}{1 - \sqrt{ax}} \text{ dx }\]
\[I = \frac{1}{\sqrt{a}}x + \frac{a - 1}{\sqrt{a}}\int\frac{1}{1 - \sqrt{ax}} \text{ dx}\]
\[\text{ Let,} \]
\[ I_1 = \int\frac{1}{1 - \sqrt{ax}} \text{ dx }\]
\[\text{ Put ax = z}^2 \]
\[ \Rightarrow adx = \text{ 2 }zdz\]
\[ I_1 = \frac{1}{a}\int\frac{2z}{1 - z}\text{ dz}\]
\[ I_1 = \frac{1}{a}\int\frac{2z - 2 + 2}{1 - z} \text{ dz }\]
\[ I_1 = \frac{1}{a}\int\frac{2z - 2}{1 - z} \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]
\[ I_1 = \frac{- 2}{a}\int\frac{1 - z}{1 - z} \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]
\[ I_1 = \frac{- 2}{a}\int \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]
\[ I_1 = \frac{- 2}{a}z - \frac{2}{a}\text{ log }\left| 1 - z \right| + C_1 \]
\[ I_1 = \frac{- 2\sqrt{ax}}{a} - \frac{2}{a}\text{ log}\left| 1 - \sqrt{ax} \right| + C_1 \]
\[I = \frac{1}{\sqrt{a}}x + \frac{a - 1}{\sqrt{a}}\left( \frac{- 2\sqrt{ax}}{a} - \frac{2}{a}\text{ log }\left| 1 - \sqrt{ax} \right| \right) + C\]
Note: The answer in indefinite integration may vary depending on the integral constant.
APPEARS IN
संबंधित प्रश्न
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`