मराठी

∫ √ a − √ X 1 − √ a X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]
बेरीज

उत्तर

\[\text{ We  have,} \]

\[I = \int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}\int\frac{1 + a - 1 - \sqrt{ax}}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}\int\frac{1 - \sqrt{ax}}{1 - \sqrt{ax}} dx + \frac{1}{\sqrt{a}}\int\frac{a - 1}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}\int dx + \frac{a - 1}{\sqrt{a}}\int\frac{1}{1 - \sqrt{ax}} \text{ dx }\]

\[I = \frac{1}{\sqrt{a}}x + \frac{a - 1}{\sqrt{a}}\int\frac{1}{1 - \sqrt{ax}} \text{ dx}\]

\[\text{ Let,} \]

\[ I_1 = \int\frac{1}{1 - \sqrt{ax}} \text{ dx }\]

\[\text{ Put ax = z}^2 \]

\[ \Rightarrow adx = \text{ 2 }zdz\]

\[ I_1 = \frac{1}{a}\int\frac{2z}{1 - z}\text{  dz}\]

\[ I_1 = \frac{1}{a}\int\frac{2z - 2 + 2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{1}{a}\int\frac{2z - 2}{1 - z} \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{- 2}{a}\int\frac{1 - z}{1 - z} \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{- 2}{a}\int \text{ dz } + \frac{1}{a}\int\frac{2}{1 - z} \text{ dz }\]

\[ I_1 = \frac{- 2}{a}z - \frac{2}{a}\text{ log }\left| 1 - z \right| + C_1 \]

\[ I_1 = \frac{- 2\sqrt{ax}}{a} - \frac{2}{a}\text{ log}\left| 1 - \sqrt{ax} \right| + C_1 \]

\[I = \frac{1}{\sqrt{a}}x + \frac{a - 1}{\sqrt{a}}\left( \frac{- 2\sqrt{ax}}{a} - \frac{2}{a}\text{ log }\left| 1 - \sqrt{ax} \right| \right) + C\]

 

Note: The answer in indefinite integration may vary depending on the integral constant.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 55 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1}{1 - \cos x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int x e^x \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int \left( e^x + 1 \right)^2 e^x dx\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×