मराठी

∫ ( 5 X + 3 ) √ 2 X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]
बेरीज

उत्तर

\[\text{Let I} = \int\left( 5x + 3 \right) \sqrt{2x - 1}dx\]
\[Putting\ 2x - 1 = t\]
\[ \Rightarrow 2x = t + 1\]
\[ \Rightarrow x = \frac{t + 1}{2}\]

\[\text{and}\ 2dx = dt\]
\[ \Rightarrow dx = \frac{dt}{2}\]

\[\therefore I = \int\left[ 5\left( \frac{t + 1}{2} \right) + 3 \right] \cdot \sqrt{t} \cdot \frac{dt}{2}\]

` = ∫ ( 5t / 2 + 5/2 + 3 ) ×( \sqrt t   dt) /2 `
\[ = \frac{1}{4}\int\left( 5t + 11 \right) t^\frac{1}{2} dt\]
\[ = \frac{1}{4}\int\left( 5 t^\frac{3}{2} + 11 t^\frac{1}{2} \right) dt\]
\[ = \frac{1}{4}\left[ 5\frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} + 11\frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]


\[ = \frac{1}{4} \times \frac{2}{5} \times  \text{5 } t^\frac{5}{2} + \frac{1}{4} \times 11 \times \frac{2}{3}\text{ t}^\frac{3}{2} + C\]
\[ = \frac{1}{2} t^\frac{5}{2} + \frac{11}{6} t^\frac{3}{2} + C\]


\[ = \frac{t^\frac{3}{2}}{2}\left[ t + \frac{11}{3} \right] + C\]


\[ = \frac{t^\frac{3}{2}}{2}\left[ \frac{3t + 11}{3} \right] + C\]


\[ = \frac{\left( 2x - 1 \right)^\frac{3}{2}}{2}\left[ \frac{3\left( 2x - 1 \right) + 11}{3} \right] + C \left[ \because t = 2x - 1 \right]\]


\[ = \frac{\left( 2x - 1 \right)^\frac{3}{2}}{2}\left[ \frac{6x - 3 + 11}{3} \right] + C\]


\[ = \left( \frac{2x - 1}{2} \right)^\frac{3}{2} \left[ \frac{2 \left( 3x + 4 \right)}{3} \right] + C\]


\[ = \frac{\left( 2x - 1 \right)^\frac{3}{2} \left( 3x + 4 \right)}{3} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.05 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.05 | Q 9 | पृष्ठ ३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  sec^6   x  tan    x   dx `

\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int \tan^3 x\ dx\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×