Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\] sin–1 (3x – 4x3)dx
Let x = sin θ
⇒ dx = cos θ.dθ
& θ = sin–1 x
\[= 3\int \theta_I . \cos _{II} \theta d\theta\]
\[ = 3\left[ \theta\int\cos \theta d\theta - \int\left\{ \frac{d}{d\theta}\left( \theta \right) - \int\cos \theta d\theta \right\}d\theta \right]\]
\[ = 3\left[ \theta . \sin \theta - \int1 . \sin \theta d\theta \right]\]
\[ = 3\left[ \theta . \sin \theta + \cos \theta \right] + C\]
\[ = 3\left[ \theta . \sin \theta + \sqrt{1 - \sin^2 \theta} \right] + C\]
\[ = 3\left[ \left( \sin^{- 1} x \right) . x + \sqrt{1 - x^2} \right] + C \left( \because \theta = \sin^{- 1} x \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int \tan^2 \left( 2x - 3 \right) dx\]
` = ∫1/{sin^3 x cos^ 2x} dx`
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int {cosec}^4 2x\ dx\]