मराठी

∫ Sin − 1 ( 3 X − 4 X 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
बेरीज

उत्तर

\[\int\]  sin–1 (3x – 4x3)dx
Let x = sin θ
⇒ dx = cos​ θ.dθ
θ = sin–1 x

\[\int\]  sin–1 (3x – 4x3)dx =
\[\int\]  sin–1 (3 sin ​θ – 4 sin3 ​θ) . cos ​θ d​θ
                                = ∫ sin–1 (sin 3​θ) . cos ​θ d​θ

\[= 3\int \theta_I . \cos _{II} \theta   d\theta\]

\[ = 3\left[ \theta\int\cos \theta d\theta - \int\left\{ \frac{d}{d\theta}\left( \theta \right) - \int\cos \theta d\theta \right\}d\theta \right]\]

\[ = 3\left[ \theta . \sin \theta - \int1 . \sin \theta d\theta \right]\]

\[ = 3\left[ \theta . \sin \theta + \cos \theta \right] + C\]

\[ = 3\left[ \theta . \sin \theta + \sqrt{1 - \sin^2 \theta} \right] + C\]

\[ = 3\left[ \left( \sin^{- 1} x \right) . x + \sqrt{1 - x^2} \right] + C \left( \because \theta = \sin^{- 1} x \right)\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 35 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x \cos^2 x\ dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×