मराठी

∫ 1 Cos X + √ 3 Sin X D X is Equal to (A) ∫ 1 Cos X + √ 3 Sin X D X (B) Log Tan ( X 2 − π 3 ) + C (C) Log Tan ( X 2 − π 3 ) + C (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

पर्याय

  • `  log   tan (x/3  + π / 2) + C `

  • \[\text{ log  tan}   \left( \frac{x}{2} - \frac{\pi}{3} \right) + C\]

  • `   1/2  log   tan (x/2  + π /3 ) + C `

  • none of these

MCQ

उत्तर

 none of these

 

\[\int\frac{1}{\cos x + \sqrt{3}\sin x}dx\]
\[ = \frac{1}{2}\int\frac{dx}{\cos x \times \frac{1}{2} + \sin x \times \frac{\sqrt{3}}{2}}\]
\[ = \frac{1}{2}\int\frac{dx}{\cos x \cdot \cos\frac{\pi}{3} + \sin x \cdot \sin\frac{\pi}{3}}\]
\[ = \frac{1}{2}\int\frac{dx}{\cos \left( x - \frac{\pi}{3} \right)}\]
\[ = \frac{1}{2}\int\sec \left( x - \frac{\pi}{3} \right)dx\]
\[ = \frac{1}{2}\text{ ln }\left| \tan \left\{ \frac{\pi}{4} + \frac{1}{2}\left( x - \frac{\pi}{3} \right) \right\} \right| + C\]
\[ = \frac{1}{2}\text{ ln  }\left| \tan \left( \frac{\pi}{4} + \frac{x}{2} - \frac{\pi}{6} \right) \right| + C\]
\[ = \frac{1}{2}\text{ ln }\left| \tan \left( \frac{x}{2} + \frac{\pi}{12} \right) \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ १९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 2 | पृष्ठ १९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int \log_{10} x\ dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×