मराठी

∫ 1 Cos 2 X + 3 Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
बेरीज

उत्तर

\[\text{ Let I }= \int \frac{1}{\text{ cos } \left( \text{ 2x }\right) + 3 \sin^2 x}\text{ dx }\]
\[ = \int \frac{1}{\left( 1 - 2 \sin^2 x \right) + 3 \sin^2 x}\text{ dx }\]
\[ = \int \frac{1}{1 + \sin^2 x}\text{ dx }\]
\[\text{Dividing numerator and denominator by} \cos^2 x\]
\[ \Rightarrow I = \int\frac{\sec^2 x}{\sec^2 x + \tan^2 x}dx\]
\[ = \int\frac{\sec^2 x}{1 + \tan^2 x + \tan^2 x}dx\]
\[ = \int \frac{\sec^2 x}{1 + 2 \tan^2}dx\]
\[ = \int \frac{\sec^2 x}{1 + \left( \sqrt{2} \tan x \right)^2}dx\]
\[\text{ Let }\sqrt{2} \tan x = t\]
\[ \Rightarrow \sqrt{2} \sec^2 x \text{ dx }= dt\]
\[ \Rightarrow \sec^2 x \text{ dx } = \frac{dt}{\sqrt{2}}\]
\[ \therefore I = \frac{1}{\sqrt{2}} \int \frac{dt}{1 + t^2}\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( t \right) + C\]
\[ = \frac{1}{\sqrt{2}} \tan^{- 1} \left( \sqrt{2} \tan x \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.22 [पृष्ठ ११४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.22 | Q 11 | पृष्ठ ११४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×