मराठी

∫ X 2 √ X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]
बेरीज

उत्तर

\[\int x^2 \sqrt{x + 2} \text{ dx  }\]
\[\text{Let x + 2 }= t\]
\[ \Rightarrow x = t - 2\]
\[ \Rightarrow dx = dt\]
\[\text{Now,} \int x^2 \sqrt{x + 2} \text{ dx }\]
\[ = \int \left( t - 2 \right)^2 \sqrt{t} \text{ dt }\]
\[ = \int\left( 4^2 - 4t + 4 \right) t^\frac{1}{2} \text{ dt }\]
\[ = \int\left( t^{2 + \frac{1}{2}} - 4 t^{1 + \frac{1}{2}} + 4 t^\frac{1}{2} \right)\text{ dt }\]
\[ = \int\left( t^\frac{5}{2} - 4 t^\frac{3}{2} + 4 t^\frac{1}{2} \right)\text{ dt }\]
\[ = \left[ \frac{t^\frac{5}{2} + 1}{\frac{5}{2} + 1} \right] - 4\left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + 4\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + C\]
\[ = \frac{2}{7} t^\frac{7}{2} - \frac{8}{5} t^\frac{5}{2} + \frac{8}{3} t^\frac{3}{2} + C\]
\[ = \frac{2}{7} \left( x + 2 \right)^\frac{7}{2} - \frac{8}{5} \left( x + 2 \right)^\frac{5}{2} + \frac{8}{3} \left( x + 2 \right)^\frac{3}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.10 | Q 1 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x e^x \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×