मराठी

∫ X 2 √ X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
बेरीज

उत्तर

\[\int\frac{x^2}{\sqrt{x - 1}}\text{  dx  }\]
\[\text{Let x}  - 1 = t^2 \]
\[ \Rightarrow x = t^2 + 1\]
\[ \Rightarrow 1 = 2t \frac{dt}{dx}\]
\[ \Rightarrow dx =  \text{ 2t dt  }\]
\[Now, \int\frac{x^2}{\sqrt{x - 1}}\text{ dx }\]
\[ = \int\frac{\left( t^2 + 1 \right)^2}{t}\text{ 2t dt }\]
\[ = 2\int\left( t^4 + 2 t^2 + 1 \right)dt\]
\[ = 2\left[ \frac{t^{4 + 1}}{4 + 1} + \frac{2 t^{2 + 1}}{2 + 1} + t \right] + C\]
\[ = 2\left[ \frac{t^5}{5} + \frac{2 t^3}{3} + t \right] + C\]
\[ = 2\left[ \frac{3 t^5 + 10 t^3 + 15t}{15} \right] + C\]
\[ = \frac{2}{15}t\left[ 3 t^4 + 10 t^2 + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1} \left[ 3 \left( x - 1 \right)^2 + 10\left( x - 1 \right) + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1} \left[ 3\left( x^2 - 2x + 1 \right) + 10x - 10 + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1} \left[ 3 x^2 - 6x + 3 + 10x - 10 + 15 \right] + C\]
\[ = \frac{2}{15}\sqrt{x - 1}\left[ 3 x^2 + 4x + 8 \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.10 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.10 | Q 2 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

`∫     cos ^4  2x   dx `


\[\int \sin^2\text{ b x dx}\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \sin^4 2x\ dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int \cot^4 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×