मराठी

∫ √ 1 − X X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]

बेरीज

उत्तर

\[\text{ Let  I } = \int\frac{\sqrt{1 - x}}{\sqrt{x}}dx\]
\[ = \int\left( \frac{\sqrt{1 - x} \cdot \sqrt{1 - x}}{\sqrt{x} \cdot \sqrt{1 - x}} \right) dx\]
\[ = \int\frac{\left( 1 - x \right)}{\sqrt{x - x^2}}dx\]
\[\text{ Let} \left( 1 - x \right) = A\frac{d}{dx}\left( x - x^2 \right) + B\]
\[ \Rightarrow 1 - x = A \left( 1 - 2x \right) + B\]
\[ \Rightarrow 1 - x = - \left( 2A \right) x + A + B\]
\[\text{Equating coefficients of like terms}\]
\[ - 2A = - 1\]
\[ \Rightarrow A = \frac{1}{2}\]
\[\text{ and   A + B = 1 }\]
\[ \Rightarrow \frac{1}{2} + B = 1\]
\[ \therefore B = \frac{1}{2}\]
\[ \therefore I = \int\frac{\frac{1}{2} \left( 1 - 2x \right) + \frac{1}{2}}{\sqrt{x - x^2}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 1 - 2x \right)}{\sqrt{x - x^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{x - x^2 + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 1 - 2x \right)}{\sqrt{x - x^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x^2 - x + \frac{1}{2^2} \right)}}dx\]
\[ = \frac{1}{2}\int\frac{\left( 1 - 2x \right)}{\sqrt{x - x^2}}dx + \frac{1}{2}\int\frac{1}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}dx\]

 

 

\[\text{ Putting x - x}^2 =\text{  t in the first integral }\]

\[ \Rightarrow \left( 1 - 2x \right)\text{  dx } = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{1}{\sqrt{t}}dt + \frac{1}{2}\int\frac{1}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}dx\]

\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + \frac{1}{2}\int\frac{dx}{\sqrt{\left( \frac{1}{2} \right)^2 - \left( x - \frac{1}{2} \right)^2}}\]

\[ = \frac{1}{2} \times 2\text{  t}^\frac{1}{2} + \frac{1}{2} \times \sin^{- 1} \left( \frac{x - \frac{1}{2}}{\frac{1}{2}} \right) + C................ \left[ \because \int\frac{1}{\sqrt{a^2 - x^2}}dx = \sin^{- 1} \frac{x}{a} + C \right]\]

\[ = \sqrt{t} + \frac{1}{2} \text{ sin}^{- 1} \left( 2x - 1 \right) + C\]

\[ = \sqrt{x - x^2} + \frac{1}{2} \text{ sin}^{- 1} \left( 2x - 1 \right) + C ..................\left[ \because t = x - x^2 \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 54 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×