मराठी

∫ X 2 ( X − 1 ) ( X + 1 ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
बेरीज

उत्तर

We have,

\[I = \int\frac{x^2 dx}{\left( x - 1 \right) \left( x + 1 \right)^2}\]

\[\text{Let }\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{\left( x + 1 \right)^2}\]

\[ \Rightarrow \frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} = \frac{A \left( x + 1 \right)^2 + B \left( x + 1 \right) \left( x - 1 \right) + C \left( x - 1 \right)}{\left( x + 1 \right)^2 \left( x - 1 \right)}\]

\[ \Rightarrow x^2 = A \left( x^2 + 2x + 1 \right) + B \left( x^2 - 1 \right) + C \left( x - 1 \right)\]

\[ \Rightarrow x^2 = \left( A + B \right) x^2 + x \left( 2A + C \right) + \left( A - B - C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 1 ...................(1)\]

\[2A + C = 0 ....................(2)\]

\[A - B - C = 0 .......................(3)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{1}{4}, B = \frac{3}{4}\text{ and }C = - \frac{1}{2}\]

\[ \therefore \frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} = \frac{1}{4 \left( x - 1 \right)} + \frac{3}{4 \left( x + 1 \right)} - \frac{1}{2 \left( x + 1 \right)^2}\]

\[ \Rightarrow I = \frac{1}{4}\int\frac{dx}{x - 1} + \frac{3}{4}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{dx}{\left( x + 1 \right)^2}\]

\[ = \frac{1}{4} \log \left| x - 1 \right| + \frac{3}{4} \log \left| x + 1 \right| - \frac{1}{2} \times \frac{- 1}{x + 1} + C\]

\[ = \frac{1}{4}\log \left| x - 1 \right| + \frac{3}{4} \log \left| x + 1 \right| + \frac{1}{2 \left( x + 1 \right)} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 31 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int \cos^2 \text{nx dx}\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\cos\sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×