Advertisements
Advertisements
प्रश्न
उत्तर
\[\int x^2 \cdot e^{x^3} \cdot \cos \left( e^{x^3} \right) dx\]
\[\text{Let e}^{x^3} = t\]
\[ \Rightarrow e^{x^3} \cdot 3 x^2 dx = dt\]
\[ \Rightarrow e^{x^3} \cdot x^2 dx = \frac{dt}{3}\]
\[Now, \int x^2 \cdot e^{x^3} \cdot \cos \left( e^{x^3} \right) dx\]
\[ = \frac{1}{3}\int\cos\left( t \right) dt\]
\[ = \frac{1}{3}\left[ \sin t \right] + C\]
\[ = \frac{1}{3}\left[ \sin \left( e^{x^3} \right) \right] + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
Evaluate the following integral:
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]