Advertisements
Advertisements
प्रश्न
पर्याय
log (3 + 4 cos2 x) + C
- \[\frac{1}{2 \sqrt{3}} \tan^{- 1} \left( \frac{\cos x}{\sqrt{3}} \right) + C\]
- \[- \frac{1}{2 \sqrt{3}} \tan^{- 1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C\]
- \[\frac{1}{2 \sqrt{3}} \tan^{- 1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C\]
उत्तर
\[\text{Putting }\cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[ \therefore I = \int\frac{- dt}{3 + 4 t^2}\]
\[ = \frac{1}{4}\int\frac{- dt}{t^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]
\[ = \frac{- 1}{4} \times \frac{1}{\frac{\sqrt{3}}{2}} \tan^{- 1} \left( \frac{t \times 2}{\sqrt{3}} \right) + C .............\left( \because \int\frac{1}{x^2 + a^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]
\[ = - \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{2 t}{\sqrt{3}} \right) + C\]
\[ = - \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C .............\left( \because t = \cos x \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int \sec^4 x\ dx\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]