मराठी

∫ Sin X 3 + 4 Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

पर्याय

  • log (3 + 4 cos2 x) + C

  • \[\frac{1}{2 \sqrt{3}} \tan^{- 1} \left( \frac{\cos x}{\sqrt{3}} \right) + C\]
  • \[- \frac{1}{2 \sqrt{3}} \tan^{- 1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C\]
  • \[\frac{1}{2 \sqrt{3}} \tan^{- 1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C\]
MCQ

उत्तर

\[- \frac{1}{2 \sqrt{3}} \tan^{- 1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C\]
 
 
\[\text{Let }I = \int\frac{\sin x}{3 + 4 \cos^2 x}dx\]

\[\text{Putting }\cos x = t\]

\[ \Rightarrow - \sin x dx = dt\]

\[ \therefore I = \int\frac{- dt}{3 + 4 t^2}\]

\[ = \frac{1}{4}\int\frac{- dt}{t^2 + \left( \frac{\sqrt{3}}{2} \right)^2}\]

\[ = \frac{- 1}{4} \times \frac{1}{\frac{\sqrt{3}}{2}} \tan^{- 1} \left( \frac{t \times 2}{\sqrt{3}} \right) + C .............\left( \because \int\frac{1}{x^2 + a^2} = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right)\]

\[ = - \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{2 t}{\sqrt{3}} \right) + C\]

\[ = - \frac{1}{2\sqrt{3}} \tan^{- 1} \left( \frac{2 \cos x}{\sqrt{3}} \right) + C .............\left( \because t = \cos x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 19 | पृष्ठ २०१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×