Advertisements
Advertisements
प्रश्न
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
बेरीज
उत्तर
` ∫ { x dx }/{\sqrt{4 - x^4}} `
` ∫ { x dx }/{\sqrt{2^2 - (x^2)^2}} `
\[\text{ let } x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx } = \frac{dt}{2}\]
Now, ` ∫ { x dx }/{\sqrt{2^2 - (x^2)^2}} `
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{2^2 - t^2}}\]
\[ = \frac{1}{2} \times \sin^{- 1} \left( \frac{1}{2} \right) + C\]
\[ = \frac{1}{2} \sin^{- 1} \left( \frac{x^2}{2} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
` ∫ { x^2 dx}/{x^6 - a^6} dx `
\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{ dx }\]
`int"x"^"n"."log" "x" "dx"`
\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2} \text{ dx }\]
\[\int\left( x + 1 \right) \text{ log x dx }\]
\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int x^3 \left( \log x \right)^2\text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .