Advertisements
Advertisements
प्रश्न
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
उत्तर
I = \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\]
\[I = \int\frac{dx}{\sqrt{- \left( x^2 + 2x - 3 \right)}}\]
\[ = \int\frac{dx}{\sqrt{- \left( x^2 + 2x - 4 + 1 \right)}}\]
\[ = \int\frac{dx}{\sqrt{- \left[ \left( x^2 + 2x + 1 \right) - 2^2 \right]}}\]
\[= \int\frac{dx}{\sqrt{- \left[ \left( x + 1 \right)^2 - 2^2 \right]}}\]
\[ = \int\frac{dx}{\sqrt{2^2 - \left( x + 1 \right)^2}}\]
\[ = \sin^{- 1} \left( \frac{x + 1}{2} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
` ∫ tan^3 x sec^2 x dx `
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
`int 1/(cos x - sin x)dx`
\[\int\frac{1}{1 - \cot x} dx\]
\[\int x^3 \text{ log x dx }\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{x + 1}{x^2 + 4x + 5} \text{ dx}\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]