मराठी

∫ Sin X √ Cos 2 X − 2 Cos X − 3 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}}dx\]
\[\text{ Putting  cos  x  = t}\]
\[ \Rightarrow - \text{ sin  x  dx }= dt\]
\[ \Rightarrow \text{ sin  x  dx } = - dt\]
\[ \therefore I = - \int\frac{dt}{\sqrt{t^2 - 2t - 3}}\]
\[ = - \int\frac{dt}{\sqrt{t^2 - 2t + 1 - 4}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t - 1 \right)^2 - \left( 2 \right)^2}}\]
\[ = - \text{ ln }\left| t - 1 + \sqrt{\left( t - 1 \right)^2 - 4} \right| + C ..........................\left[ \because \int\frac{1}{\sqrt{x^2 - a^2}}dx = \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = - \text{ ln }\left| \left( \cos x - 1 \right) + \sqrt{\cos^2 x - 2 \cos x - 3} \right| + C.................... \left[ \because t = \cos x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 48 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×