English

∫ Sin X √ Cos 2 X − 2 Cos X − 3 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]
Sum

Solution

\[\text{ Let I }= \int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}}dx\]
\[\text{ Putting  cos  x  = t}\]
\[ \Rightarrow - \text{ sin  x  dx }= dt\]
\[ \Rightarrow \text{ sin  x  dx } = - dt\]
\[ \therefore I = - \int\frac{dt}{\sqrt{t^2 - 2t - 3}}\]
\[ = - \int\frac{dt}{\sqrt{t^2 - 2t + 1 - 4}}\]
\[ = - \int\frac{dt}{\sqrt{\left( t - 1 \right)^2 - \left( 2 \right)^2}}\]
\[ = - \text{ ln }\left| t - 1 + \sqrt{\left( t - 1 \right)^2 - 4} \right| + C ..........................\left[ \because \int\frac{1}{\sqrt{x^2 - a^2}}dx = \text{ ln}\left| x + \sqrt{x^2 - a^2} \right| + C \right]\]
\[ = - \text{ ln }\left| \left( \cos x - 1 \right) + \sqrt{\cos^2 x - 2 \cos x - 3} \right| + C.................... \left[ \because t = \cos x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 48 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x e^x \text{ dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×