Advertisements
Advertisements
Question
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
Sum
Solution
\[\text{ Let I }= \int\frac{dx}{p + q \tan x}\]
\[ = \int\frac{1}{p + \frac{q \sin x}{\cos x}}dx\]
\[ = \int\frac{\cos x}{q \sin x + p \cos x}dx\]
\[\text{ Let cos x} = A \left(\text{ q sin x + p cos x} \right) + B \left( q \cos x - p \sin x \right)\]
\[ \Rightarrow \cos x = \left( Ap + Bq \right) \cos x + \left( Aq - Bp \right) \sin x\]
Comparing coefficients of like terms
\[Ap + Bq = 1 . . . \left( 1 \right)\]
\[Aq - Bp = 0 . . . \left( 2 \right)\]
\[\Rightarrow A p^2 + Bpq = p\]
\[ \Rightarrow A q^2 - Bpq = 0\]
\[ \Rightarrow A = \frac{p}{p^2 q^2}\]
Putting value of A in eq (1)
\[\frac{p^2}{p^2 + q^2} + Bq = 1\]
\[ \Rightarrow Bq = 1 - \frac{p^2}{p^2 + q^2}\]
\[ \Rightarrow Bq = \frac{p^2 + q^2 - p^2}{p^2 + q^2}\]
\[ \Rightarrow B = \frac{q}{p^2 + q^2}\]
\[ \therefore I = \int\left[ \frac{p}{p^2 + q^2} \times \frac{\left( q \sin x + p \cos x \right)}{\left( q \sin x + p \cos x \right)} + \frac{q}{p^2 + q^2} \times \frac{\left( q \cos x - p \sin x \right)}{\left( q \sin x + p \cos x \right)} \right]dx\]
\[ = \frac{p}{p^2 + q^2}\int dx + \frac{q}{p^2 + q^2}\int\left( \frac{q \cos x - p \sin x}{q \sin x + p \cos x} \right)dx\]
\[\text{ Putting q sin x + p cos x = t}\]
\[ \Rightarrow \left( q \cos x - p \sin x \right) dx = dt\]
\[ \therefore I = \frac{p}{p^2 + q^2}\int\ dx + \frac{q}{p^2 + q^2}\int\frac{1}{t}dt\]
\[ = \frac{p}{p^2 + q^2} x + \frac{q}{p^2 + q^2} \text{ ln } \left| q \sin x + p \cos x \right| + C\]
\[ \Rightarrow Bq = 1 - \frac{p^2}{p^2 + q^2}\]
\[ \Rightarrow Bq = \frac{p^2 + q^2 - p^2}{p^2 + q^2}\]
\[ \Rightarrow B = \frac{q}{p^2 + q^2}\]
\[ \therefore I = \int\left[ \frac{p}{p^2 + q^2} \times \frac{\left( q \sin x + p \cos x \right)}{\left( q \sin x + p \cos x \right)} + \frac{q}{p^2 + q^2} \times \frac{\left( q \cos x - p \sin x \right)}{\left( q \sin x + p \cos x \right)} \right]dx\]
\[ = \frac{p}{p^2 + q^2}\int dx + \frac{q}{p^2 + q^2}\int\left( \frac{q \cos x - p \sin x}{q \sin x + p \cos x} \right)dx\]
\[\text{ Putting q sin x + p cos x = t}\]
\[ \Rightarrow \left( q \cos x - p \sin x \right) dx = dt\]
\[ \therefore I = \frac{p}{p^2 + q^2}\int\ dx + \frac{q}{p^2 + q^2}\int\frac{1}{t}dt\]
\[ = \frac{p}{p^2 + q^2} x + \frac{q}{p^2 + q^2} \text{ ln } \left| q \sin x + p \cos x \right| + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \tan^2 \left( 2x - 3 \right) dx\]
`∫ cos ^4 2x dx `
` ∫ sin x \sqrt (1-cos 2x) dx `
\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{x^2}{\sqrt{x - 1}} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int \sec^4 2x \text{ dx }\]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{1}{2 x^2 - x - 1} dx\]
\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]
\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]
\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
` ∫ x tan ^2 x dx
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]
∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]
\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int x\sqrt{2x + 3} \text{ dx }\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\sqrt{x^2 - a^2} \text{ dx}\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]