English

∫ 1 P + Q Tan X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]
Sum

Solution

 

\[\text{ Let I }= \int\frac{dx}{p + q \tan x}\]
\[ = \int\frac{1}{p + \frac{q \sin x}{\cos x}}dx\]
\[ = \int\frac{\cos x}{q \sin x + p \cos x}dx\]
\[\text{ Let cos x} = A \left(\text{  q  sin x + p  cos x} \right) + B \left( q \cos x - p \sin x \right)\]
\[ \Rightarrow \cos x = \left( Ap + Bq \right) \cos x + \left( Aq - Bp \right) \sin x\]

Comparing coefficients of like terms

\[Ap + Bq = 1 . . . \left( 1 \right)\]
\[Aq - Bp = 0 . . . \left( 2 \right)\]

\[\Rightarrow A p^2 + Bpq = p\]
\[ \Rightarrow A q^2 - Bpq = 0\]
\[ \Rightarrow A = \frac{p}{p^2 q^2}\]

Putting value of A in eq (1)

\[\frac{p^2}{p^2 + q^2} + Bq = 1\]
\[ \Rightarrow Bq = 1 - \frac{p^2}{p^2 + q^2}\]
\[ \Rightarrow Bq = \frac{p^2 + q^2 - p^2}{p^2 + q^2}\]
\[ \Rightarrow B = \frac{q}{p^2 + q^2}\]
\[ \therefore I = \int\left[ \frac{p}{p^2 + q^2} \times \frac{\left( q \sin x + p \cos x \right)}{\left( q \sin x + p \cos x \right)} + \frac{q}{p^2 + q^2} \times \frac{\left( q \cos x - p \sin x \right)}{\left( q \sin x + p \cos x \right)} \right]dx\]
\[ = \frac{p}{p^2 + q^2}\int dx + \frac{q}{p^2 + q^2}\int\left( \frac{q \cos x - p \sin x}{q \sin x + p \cos x} \right)dx\]
\[\text{ Putting  q sin x + p  cos x = t}\]
\[ \Rightarrow \left( q \cos x - p \sin x \right) dx = dt\]
\[ \therefore I = \frac{p}{p^2 + q^2}\int\ dx + \frac{q}{p^2 + q^2}\int\frac{1}{t}dt\]
\[ = \frac{p}{p^2 + q^2} x + \frac{q}{p^2 + q^2} \text{ ln } \left| q \sin x + p \cos x \right| + C\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.24 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.24 | Q 4 | Page 122

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \tan^2 \left( 2x - 3 \right) dx\]


`∫     cos ^4  2x   dx `


` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

 
` ∫  x tan ^2 x dx 

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×