Advertisements
Advertisements
Question
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
Sum
Solution
` Note: "Here, we are considering log x as" log_e x . `
\[\text{Let I }= \int\frac{1}{x \log x \log\left( \log x \right)}dx\]
\[Putting \log\left( \log x \right) = t\]
\[ \Rightarrow \frac{1}{x\log x} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{x \log x}dx = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \log\left| t \right| + C\]
\[ = \log\left| \text{log}\left( \ logx \right) \right| + C \left[ \because t = \text{log}\left( \text{log x} \right) \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int \cot^5 x \text{ dx }\]
\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]
\[\int\frac{1}{a^2 x^2 + b^2} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int \cos^3 (3x)\ dx\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]