Advertisements
Advertisements
Question
Solution
` Note : "Here, we are considering " log x as log_e x `
\[\text{Let I} = \int\frac{cosec x}{\log \tan\frac{x}{2}}dx\]
\[Putting\ \log \tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2}\frac{\sec^2 \frac{x}{2}}{\tan\frac{x}{2}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{2 \sin\frac{x}{2} . \cos\frac{x}{2}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{1}{\sin x} = \frac{dt}{dx}\]
\[ \Rightarrow \text{cosec x dx} = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \text{log}\left| t \right| + C\]
\[ = \text{log }\left| \log \tan\frac{x}{2} \right| + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
Find: `int (3x +5)/(x^2+3x-18)dx.`