English

∫ X 2 + X − 1 ( X + 1 ) 2 ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{\left( x^2 + x - 1 \right) dx}{\left( x + 1 \right)^2 \left( x + 2 \right)}\]

\[\text{Let }\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 1 \right)} = \frac{A \left( x + 1 \right) \left( x + 2 \right) + B \left( x + 2 \right) + C \left( x + 1 \right)^2}{\left( x + 1 \right)^2 \left( x + 2 \right)}\]

\[ \Rightarrow x^2 + x - 1 = A \left( x^2 + 3x + 2 \right) + B \left( x + 2 \right) + C \left( x^2 + 2x + 1 \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + C = 1 .................(1)\]

\[3A + B + 2C = 1 ...................(2)\]

\[2A + 2B + C = - 1 .......................(3)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = 0 \]

\[B = - 1\]

\[C = 1\]

\[ \therefore \frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{- 1}{\left( x + 1 \right)^2} + \frac{1}{x + 2}\]

\[ \Rightarrow I = \int\frac{- dx}{\left( x + 1 \right)^2} + \int\frac{dx}{x + 2}\]

\[ = - \int \left( x + 1 \right)^{- 2} dx + \int\frac{dx}{x + 2}\]

\[ = - \left[ \frac{\left( x + 1 \right)^{- 2 + 1}}{- 2 + 1} \right] + \log \left| x + 2 \right| + C\]

\[ = \frac{1}{\left( x + 1 \right)} + \log \left| x + 2 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 32 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

`∫     cos ^4  2x   dx `


\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫  sec^6   x  tan    x   dx `

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×