Advertisements
Advertisements
Question
\[\int\frac{\cos^7 x}{\sin x} dx\]
Sum
Solution
\[\text{ Let I } = \int\frac{\cos^7 x}{\sin x}dx\]
\[ = \int\frac{\cos^6 x \cdot \cos x dx}{\sin x}\]
\[ = \int\frac{\left( \cos^2 x \right)^3 \cdot \cos x}{\sin x}dx\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^3 \cdot \cos x}{\sin x}dx\]
\[\text{ Let sin x} = t\]
\[ \Rightarrow \text{ cos x dx } = dt\]
\[ \therefore I = \int\frac{\left( 1 - t^2 \right)^3}{t}dt\]
\[ = \int\left( \frac{1 - t^6 - 3 t^2 + 3 t^4}{t} \right)\text{ dt }\]
\[ = \int\left( \frac{1}{t} - t^5 - 3t + 3 t^3 \right)\text{ dt}\]
\[ = \text{ ln }\left| t \right| - \frac{t^6}{6} - \frac{3 t^2}{2} + \frac{3 t^4}{4} + C\]
\[ = \text{ ln }\left| \sin x \right| - \frac{\sin^6 x}{6} - \frac{3 \sin^2 x}{2} + \frac{3}{4} \sin^4 x + C ...............\left( \because t = \sin x \right)\]
\[ = \int\frac{\cos^6 x \cdot \cos x dx}{\sin x}\]
\[ = \int\frac{\left( \cos^2 x \right)^3 \cdot \cos x}{\sin x}dx\]
\[ = \int\frac{\left( 1 - \sin^2 x \right)^3 \cdot \cos x}{\sin x}dx\]
\[\text{ Let sin x} = t\]
\[ \Rightarrow \text{ cos x dx } = dt\]
\[ \therefore I = \int\frac{\left( 1 - t^2 \right)^3}{t}dt\]
\[ = \int\left( \frac{1 - t^6 - 3 t^2 + 3 t^4}{t} \right)\text{ dt }\]
\[ = \int\left( \frac{1}{t} - t^5 - 3t + 3 t^3 \right)\text{ dt}\]
\[ = \text{ ln }\left| t \right| - \frac{t^6}{6} - \frac{3 t^2}{2} + \frac{3 t^4}{4} + C\]
\[ = \text{ ln }\left| \sin x \right| - \frac{\sin^6 x}{6} - \frac{3 \sin^2 x}{2} + \frac{3}{4} \sin^4 x + C ...............\left( \because t = \sin x \right)\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]
\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\ ∫ x \text{ e}^{x^2} dx\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]
\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int x \cos^3 x\ dx\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int \cos^5 x\ dx\]
\[\int\frac{1}{1 - x - 4 x^2}\text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int \log_{10} x\ dx\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int\frac{x}{x^3 - 1} \text{ dx}\]
\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]