English

∫ Sin X Sin 2 X Sin 3x Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]

Sum

Solution

\[\int\sin x .\sin 2x .\text{ sin  3x  dx }\]
\[ = \frac{1}{2}\int\left( 2 \sin 2x \cdot \sin x \right) \text{ sin  3x  dx }\]
\[ = \frac{1}{2}\int\left[ \text{ cos} \left( 2x - x \right) - \text{ cos } \left( 2x + x \right) \right] \text{ sin  3x  dx }.............. \left[ \because \text{ 2  sin  A  sin  B = cos (A - B) - cos (A + B)} \right]\]
\[ \Rightarrow  = \frac{1}{2}\int\left[ \cos x - \cos 3x \right] \text{ sin  3x  dx }\]
\[ = \frac{1}{2}\int\sin 3x \cdot \text{ cos  x  dx } - \frac{1}{2}\int\sin 3x \cdot \text{ cos  3x dx }\]
\[ = \frac{1}{4}\int \text{ 2 }\sin 3x \cdot \text{ cos  x   dx} - \frac{1}{4}\int\text{ 2 }\sin 3x \cdot \text{ cos  3x  dx } \]
\[ = \frac{1}{4}\int\left[ \sin 4x + \sin 2x \right]dx - \frac{1}{4}\int\text{ sin  6x  dx } ............. \left[ \because \text{ 2  sin  A cos  B = sin (A + B) - sin (A - B)} \right]\]
\[ = \frac{1}{4}\left[ \frac{- \cos 4x}{4} - \frac{\cos 2x}{2} \right] - \frac{1}{4}\left[ - \frac{\cos 6x}{6} \right] + C\]
\[ = - \frac{\cos 4x}{16} - \frac{\cos 2x}{8} + \frac{\cos 6x}{24} + C\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 20 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

`  ∫  sin 4x cos  7x  dx  `

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


`int"x"^"n"."log"  "x"  "dx"`

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×