Advertisements
Advertisements
Question
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
Sum
Solution
\[\int\sin x .\sin 2x .\text{ sin 3x dx }\]
\[ = \frac{1}{2}\int\left( 2 \sin 2x \cdot \sin x \right) \text{ sin 3x dx }\]
\[ = \frac{1}{2}\int\left[ \text{ cos} \left( 2x - x \right) - \text{ cos } \left( 2x + x \right) \right] \text{ sin 3x dx }.............. \left[ \because \text{ 2 sin A sin B = cos (A - B) - cos (A + B)} \right]\]
\[ \Rightarrow = \frac{1}{2}\int\left[ \cos x - \cos 3x \right] \text{ sin 3x dx }\]
\[ = \frac{1}{2}\int\sin 3x \cdot \text{ cos x dx } - \frac{1}{2}\int\sin 3x \cdot \text{ cos 3x dx }\]
\[ = \frac{1}{4}\int \text{ 2 }\sin 3x \cdot \text{ cos x dx} - \frac{1}{4}\int\text{ 2 }\sin 3x \cdot \text{ cos 3x dx } \]
\[ = \frac{1}{4}\int\left[ \sin 4x + \sin 2x \right]dx - \frac{1}{4}\int\text{ sin 6x dx } ............. \left[ \because \text{ 2 sin A cos B = sin (A + B) - sin (A - B)} \right]\]
\[ = \frac{1}{4}\left[ \frac{- \cos 4x}{4} - \frac{\cos 2x}{2} \right] - \frac{1}{4}\left[ - \frac{\cos 6x}{6} \right] + C\]
\[ = - \frac{\cos 4x}{16} - \frac{\cos 2x}{8} + \frac{\cos 6x}{24} + C\]
\[ = \frac{1}{2}\int\left( 2 \sin 2x \cdot \sin x \right) \text{ sin 3x dx }\]
\[ = \frac{1}{2}\int\left[ \text{ cos} \left( 2x - x \right) - \text{ cos } \left( 2x + x \right) \right] \text{ sin 3x dx }.............. \left[ \because \text{ 2 sin A sin B = cos (A - B) - cos (A + B)} \right]\]
\[ \Rightarrow = \frac{1}{2}\int\left[ \cos x - \cos 3x \right] \text{ sin 3x dx }\]
\[ = \frac{1}{2}\int\sin 3x \cdot \text{ cos x dx } - \frac{1}{2}\int\sin 3x \cdot \text{ cos 3x dx }\]
\[ = \frac{1}{4}\int \text{ 2 }\sin 3x \cdot \text{ cos x dx} - \frac{1}{4}\int\text{ 2 }\sin 3x \cdot \text{ cos 3x dx } \]
\[ = \frac{1}{4}\int\left[ \sin 4x + \sin 2x \right]dx - \frac{1}{4}\int\text{ sin 6x dx } ............. \left[ \because \text{ 2 sin A cos B = sin (A + B) - sin (A - B)} \right]\]
\[ = \frac{1}{4}\left[ \frac{- \cos 4x}{4} - \frac{\cos 2x}{2} \right] - \frac{1}{4}\left[ - \frac{\cos 6x}{6} \right] + C\]
\[ = - \frac{\cos 4x}{16} - \frac{\cos 2x}{8} + \frac{\cos 6x}{24} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
` ∫ sin 4x cos 7x dx `
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int \cos^7 x \text{ dx } \]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]
\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
`int"x"^"n"."log" "x" "dx"`
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]
\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]
\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{ dx }\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .